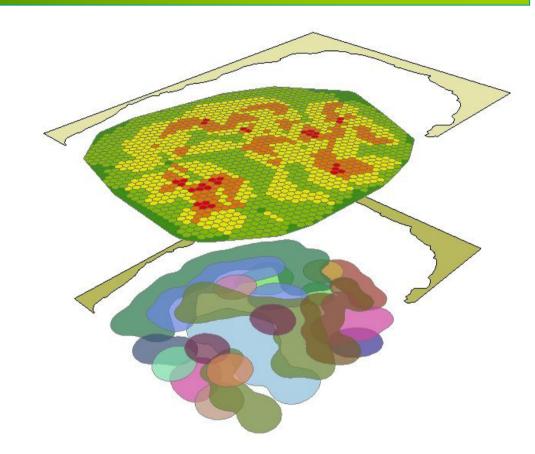


Diversidade Biológica

Prof. Dr. Fernando Santiago dos Santos


fernandoss@ifsp.edu.br

www.fernandosantiago.com.br

(13) 8822-5365

Aula 4

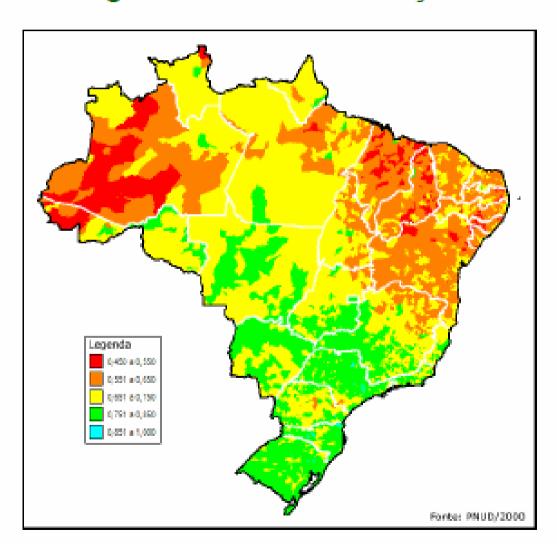
Análises da diversidade biológica

Exemplo da variação da riqueza de espécies em um local. Áreas vermelhas têm maior riqueza específica, e áreas verdes têm menor riqueza de espécies.

1. Analisar a biodiversidade

- Classificar objetos → rankeamento
- Utilizar diferentes índices para tentar compreender a biodiversidade local

Relativização de uma variável


Combinação de diferentes variáveis

Ponderação (pesos) de diferentes variáveis

ÍNDICE DE DESENVOLVIMENTO HUMANO

IDH = (L+E+R)/3

onde: L = Longevidade, E = Educação e R = Renda

PROBLEMAS PARA COMPOR UM ÍNDICE:

Quantas variáveis usar

Quais variáveis usar

Qual é o peso dado a cada variável escolhida

Maior peso na riqueza → maior valor proporcional em espécies raras

Maior peso na equabilidade → menor valor proporcional em espécies raras

Tamanho

Fenologia

Hábito

Riqueza

Equabilidade

Riqueza + Equabilidade

Relaçõs filogenéticas

Grupos funcionais

2. Medidas de índice de diversidade

- Medidas baseadas somente em riqueza 'numérica' (contagem de espécies → S)
- Densidade de espécies (S por área → d)
- Índices de riqueza e equabilidade (índices de heterogeneidade): Brillouin, Shannon e Simpson

MAIS UTILIZADO EM INVENTÁRIOS FLORESTAIS

3. Índice de Brillouin (H ou HB)

 Descritor de comunidades totalmente conhecidas (inventariadas)

$$H = (1/N) (\log N! - \sum_{i=1}^{s} \log N_{i}!)$$

N = número total de indivíduos na comunidade

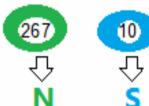
S = Número de espécies total na comunidade

Ni = Número de indivíduos da espécie i na comunidade

3. Índice de Brillouin (continuação)

- Problemas: o completo inventário da comunidade (na realidade, pouco provável); raramente aplicável na prática; depende do tamanho das comunidades
- Ponto positivo: não é necessário teste estatístico para comparações (não é uma amostra, e sim a totalidade da comunidade)

4. Índice de Shannon (H')


 Descritor de situações em que não se pode inventariar totalmente a comunidade amostras

$$H' = -\sum_{i=1}^{s} p_i. \ Ln \ p_i$$

p_i = abundância relativa (proporção) da espécie i na amostra

$$p_i = n_i/N$$
 $\begin{cases} n_i = n \text{úmero de indivíduos da espécie i} \\ N = N \text{úmero de indivíduos total da amostra} \end{cases}$

espécies	n _i	p _i	Inp _i	p _i .lnp _i
1	91	0,341	-1,076389	-0,366859
2	2	0,007	-4,894101	-0,03666
3	10	0,037	-3,284664	-0,123021
4	11	0,041	-3,189353	-0,131397
5	10	0,037	-3,284664	-0,123021
6	9	0,034	-3,390024	-0,11427
7	6	0,022	-3,795489	-0,085292
8	7	0,026	-3,641339	-0,095466
9	87	0,326	-1,121341	-0,365381
10	34	0,127	-2,060888	-0,262435

Ajuda do Excel

Retorna o logaritmo natural de um número. Os logaritmos naturais se baseiam na constante e (2,71828182845904).

Sintaxe

LN

LN(núm)

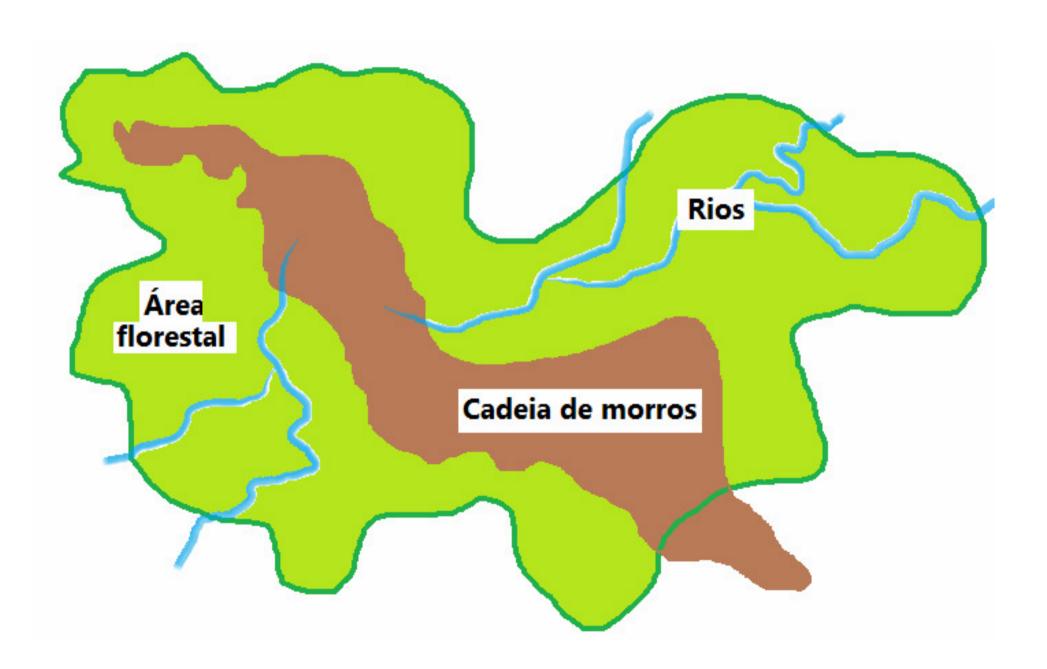
Núm é o número real positivo para o qual você deseja obter o logaritmo natural.

Comentários

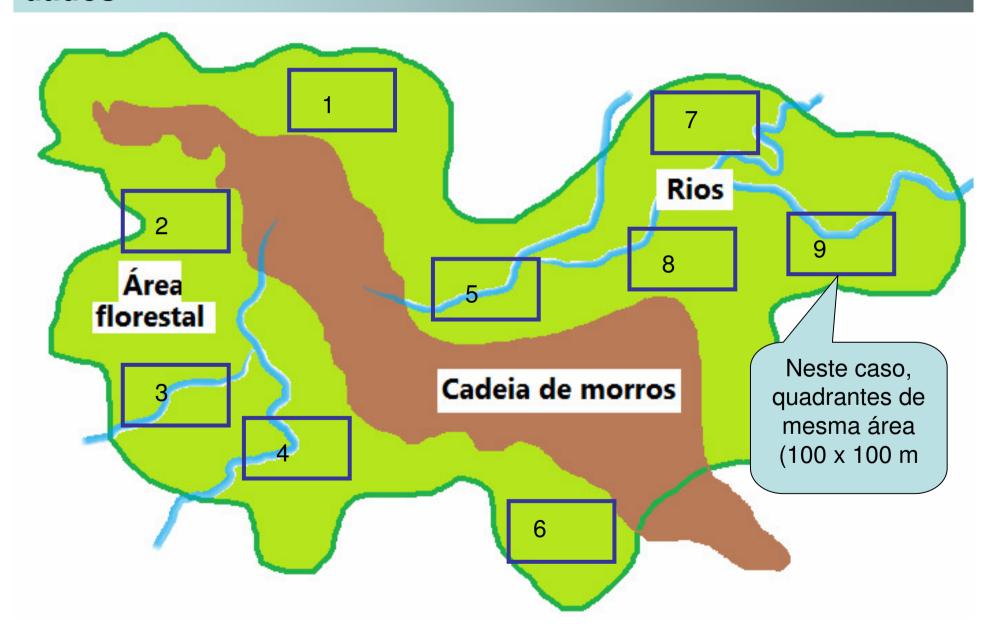
LN é o inverso da função EXP.

Exemplo

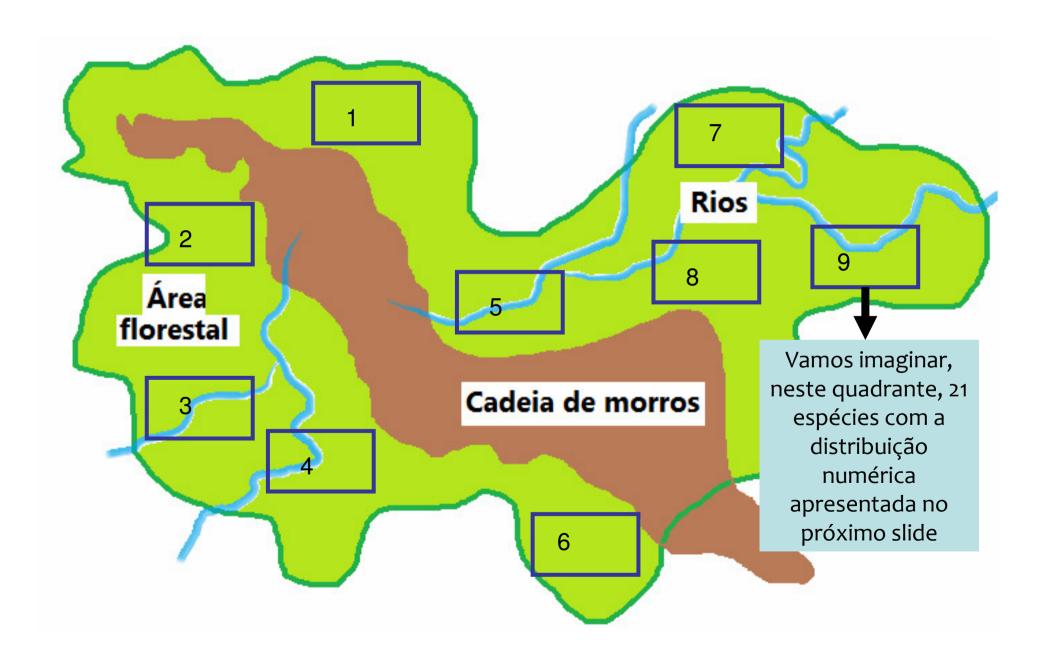
Talvez seja mais fácil compreender o exemplo se você copiá-lo para uma planilha em branco.


Como?

	A	В		
1	Fórmula	Descrição (resultado)		
2	=LN(86)	O logaritmo natural de 86 (4,454347)		
4	=LN (2,7182818)	O logaritmo natural do valor da constante e (1)		
	=LN(EXP(3))	O logaritmo natural de e elevado à potência 3 (3)		


4. Índice de Shannon (continuação)

- Problemas: subestimação da diversidade de uma comunidade quando há amostras menores do que 50 indivíduos (por testes empíricos); não há testes estatísticos seguros para provar a importância do uso de H' em comunidades infinitamente grandes
- Pontos positivos: índice mais usado na literatura (tradição de uso e estudos); há sensibilidade para espécies raras (quanto menor o valor, maior a porcentagem de raridade); há sensibilidade para variações nas abundâncias


Situação hipotética: determinar H' na área abaixo

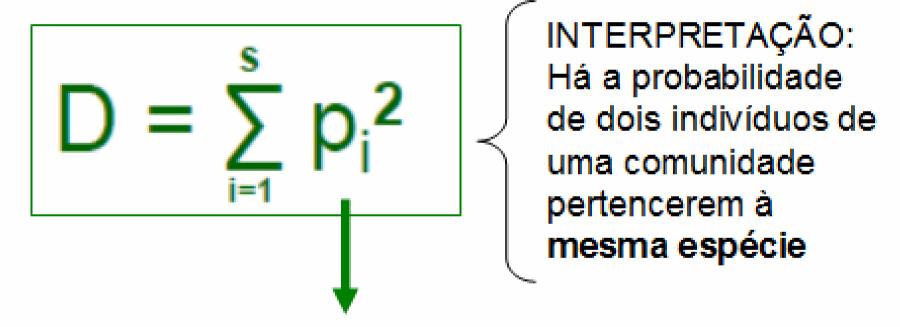
Primeiro passo: determinar a metodologia de coleta dos dados

Segundo passo: inventariar os quadrantes

es péc ies	n _i	p _i	Inp _i	p _i .lnp _i
1	2	0,049	-3,020425	-0,147338
2	1	0,024	-3,713572	-0,090575
3	1	0,024	-3,713572	-0,090575
4	3	0,073	-2,61496	-0,191339
5	2	0,049	-3,020425	-0,147338
6	1	0,024	-3,713572	-0,090575
7	2	0.049	-3.020425	-0.147338
8	7	0,171	-1,767662	-0,301796
9	2	0,049	-3,020425	-0,147338
10	1	0,024	-3,713572	-0,090575
11	1	0,024	-3,713572	-0,090575
12	1	0,024	-3,713572	-0,090575
13	1	0,024	-3,713572	-0,090575
14	1	0,024	-3,713572	-0,090575
15	1	0,024	-3,713572	-0,090575
16	2	0,049	-3,020425	-0,147338
17	4	0,098	-2,327278	-0,227051
18	5	0,122	-2,104134	-0,256602
19	1	0,024	-3,713572	-0,090575
20	1	0,024	-3,713572	-0,090575
21	1	0,024	-3,713572	-0,090575

espécie mais abundante

41 21


N S

2,800376

H'

5. Índice de Simpson (D)

Índice de Dominância e não de Heterogeneidade ->
Quando maior o valor de D, menor a diversidade

p_i = abundância relativa (proporção) da espécie i na amostra p_i = n_i/N

Trocando em miúdos...

Quantas e quais variáveis usar

Dependem do **objetivo** e do **objeto** de estudo

Qual é o peso de cada variável

Um índice criado para determinado objetivo pode **não** servir para outro